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This study considers steady-state, k i t e  amplitude thermal convection in a non- 
Newtonian fluid. Pseudoplastic (power-law) fluids are considered for a power-law 
exponent n in the range 1 < n < 9. Finite-difference solutions are obtained for two- 
dimensional periodic convective modes in a horizontally infinite fluid layer heated 
from below. The results show that the patterns of convective motions differ only 
slightly from those in a fluid of constant viscosity for n 5 3 while for n 2 3 significant 
differences are observed. An average viscosity is introduced which provides a good 
correlation of heat transfer across the layer with the Rayleigh number for the com- 
plete range of n considered. 

1. Introduction 
A variety of fluids are known to have a nonlinear, pseudoplastic rheology. Among 

these are complex liquids, solutions and suspensions, and solids deforming by steady- 
state creep. The flow of ice in glaciers is an example of flow by steady-state creep. 
Another example is flow of polycrystalline rock in the earth’s mantle, the study of 
which has been the primary motivation for the present investigation. 

The theory of plate tectonics (see Le Pichon, Francheteau & Bonin 1973) requires 
that flow has occurred in the earth’s mantle over time scales of tens of millions of years. 
These convective motions are thought to be generated by the heat produced by the 
decay of radioactive isotopes, and previous studies of finite amplitude thermal con- 
vection (see Turcotte & Oxburgh 1967; McKenzie, Roberts & Weiss 1974) indicate 
the feasibility of this hypothesis. Thus thermal convection in the earth’s mantle is 
believed to  have played an important role in the development of surface geological 
features and in the long-term thermal and chemical evolution of the earth. To under- 
stand these processes better, studies have been made of steady-state, finite amplitude 
thermal convection in a non-Newtonian fluid having a power-law or pseudoplastic 
rheology with strain rate proportional to stress to the power n. 

Several previous studies of thermal convection in non-Newtonian fluids have been 
made. Liang & Acrivos (1970) studied thermal convection in polymer solutions experi- 
mentally. The viscosity of their polymer solutions decreased with increasing strain rate, 
approaching uniform values a t  both high and low strain rates. The maximum variation 
of the viscosity was slightly more than two orders of magnitude over a strain-rate 
variation of six orders of magnitude. They concluded from their experiments that 
convective motions in non-Newtonian fluids differed only slightly from those in fluids 
of uniform viscosity. However, for creep in the earth’s mantle, the effective viscosity 
is expected to be strain-rate dependent over a much wider range of strain rates and the 
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magnitude of a limiting viscosity a t  low strain rates is uncertain (see Parmentier, 
Turcotte & Torrance 1976). 

Ozoe & Churchill ( 1972) obtained finite-difference solutions for thermal convection 
in a layer of power-law fluid. Their solutions were for finite Prandtl number with 
1 < n < 2. They attempted to determine a critical Rayleigh number for non- 
Newtonian fluid layers. However, as recognized by Tien, Tsuei & Sun (1969) and as 
pointed out by Parmentier et al. (1976), the nonlinearity introduced by a power-law 
rheology makes the marginal-stability problem nonlinear, and a critical Rayleigh 
number cannot be defined independently of the amplitude and mode shape of the 
disturbance initiating the motion. 

Van der Borght, Murphy & Steiner (1974) have considered finite amplitude thermal 
convection in a layer of a Maxwellian viscoelastic fluid. Their solutions were obtained 
numerically by a Galerkin technique. Results for viscoelastic and power-law fluids 
cannot be directly compared. 

The present study considers steady-state thermal convection in a horizontally 
infinite fluid layer heated from below. The fluid layer is bounded above and below by 
rigid, no-slip boundaries on which the temperature is prescribed. The governing 
equations are formulated and solutions are obtained by finite-difference approxi- 
mations. Very viscous fluids (infinite Prandtl number) with a power-law rheology are 
considered for 1 < n < 9. A previous paper (Parmentier et al. 1976) considered the 
case n = 3 in some detail. These studies showed that the differences in the structure of 
thermal convection patterns in Newtonian and non-Newtonian fluids with n < 3 were 
small and that the effects of a non-Newtonian viscosity were consistent with the 
experimental results of Liang & Acrivos (1970). This paper considers larger values of 
n, 3 < n < 9, for which significant effects on flow structure are caused by the strain- 
rate dependence of the viscosity. An average viscosity, defined on the basis of energy 
considerations, is shown to provide a good correlation of the heat flux with the Ray- 
leigh number based on this average viscosity. 

2. Mathematical formulation 
The equations for conservation of mass, momentum and energy in a viscous com- 

pressible fluid are given by Batchelor (1967). These equations are simplified using 
the Boussinesq approximation, which is rigorously discussed by Mihaljan (1962). 
I n  tensor notation with co-ordinates xi, velocities ui, pressure p and deviatoric stress 
rii, the equations for steady-state flow are 

auipxi = 0, (1)  

apt a ( ””) axi axj  pr ui = --+- rij-t-RaByi, 

where yi is a unit vector in the direction of gravity. Here p’ is the pressure deviation 
p -po  from the hydrostatic value defined by 
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po being a reference density of the fluid and g the gravitational acceleration. The 
density of the fluid is assumed to depend only on temperature with 

P-Po = -poa(T-To), 

where a is the coefficient of thermal expansion and To is a reference temperature, taken 
to be the temperature at the top boundary of the fluid layer. 

In  these equations, the variables have been non-dimensionalized with a length d,  
the depth of the convecting layer, a time d 2 / K ,  where K is the thermal diffusivity of the 
fluid, a reference viscosity ,uo and the reference density po. The dimensionless tem- 
perature is defined as 

where AT is the temperature difference between the top and bottom boundaries of the 
fluid layer. The Rayleigh number and the Prandtl number 

e = (T - T ~ ) ~ A T ,  (4) 

Ra = agATd3/vo~, Pr = vO/K ( 5 )  

appear as dimensionless parameters with vo = ,uo/po. All the thermodynamic and 
transport coefficients of the fluid are assumed to be constant with the exception of the 
viscosity. The case Pr + co is considered so that the inertia terms in the momentum 
equation may be neglected. 

The most general isotropic constitutive equation for a pseudoplastic power-law 
fluid may be written (see Serrin 1959, p. 233) as 

and coefficients A,, A,  and A ,  which depend on the three invariants of the deviatoric 
stress tensor 

g 1  = rii 0, g 2  = TijTij, fl3 = rijrjk~ki 

and on thermodynamic state variables, i.e. pressure and temperature. For deforma- 
tions which are incompressible (iii = 0) ,  (6) reduces to 

iij = A18i.j + A27ij - ( 3 A , / ~ , ) ~ i k ~ k j ,  (7) 

Without further, more specialized, assumptions about the nature of the fluid, this is 
the simplest constitutive equation which can describe a pseudoplastic fluid. 

In  this study the simpler law given in dimensional form by 

Zij = (P-l/An)rij  (8) 

is considered, where r = vt. This law assumes that A ,  = 0 and that A,  = l/An depends 
only on g2. For this law, each strain-rate component is proportional to the corre- 
sponding component of deviatoric stress. Nye (1953) considers (8) adequate to describe 
the steady-state creep of polycrystalline ice. Stocker & Ashby (1973) and Weertman 
& Weertman (1975) suggest that it can also describe the deformation of polycrystalline 
rock. 

For the rheology represented by (8), an effective scalar viscosity can be introduced 
by taking 

p = An/2rn-1, (9a) 
1-2 
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or in terms of strain-rate components, 

= IA,jlln-l 2 (9 b )  

where C = (C,,C,,)t. The viscosity a t  the reference strain rate K / d 2  is chosen as the 
reference viscosity po introduced earlier : 

po = +A(K/d2) ' ln- l .  

Then the dimensionless viscosity 7~ = ,u/,uo becomes simply 

with 
= ,jlln-l 

rij = 2nCij, 

where rij and t i j  have been non-dimensionalized by poK/d2 and K / d 2  respectively. 
Two-dimensional fluid motions periodic in the horizontal co-ordinate with wave- 

length h are considered. For two-dimensional motion, the governing equations can be 
further simplified by taking x = (x ,  z )  and u = (u, w) and by introducing a stream 
function $. The z co-ordinate is vertical and y = (0, - 1). The velocity components 

= a$/az, w = -a$/ax (12) 

identically satisfy the continuity equation ( 1). Cross-differentiating and subtracting 
the x and z momentum equations (2) eliminates the pressure and gives 

For two-dimensional flow, the transport equation for thermal energy becomes 

where 

The solutions to be considered are periodic in the x co-ordinate with rigid (no-:_ip) 
isothermal boundaries at z = 0 and z = 1 on which the temperature is prescribed to 
be 0 = 1 and 8 = 0 respectively. The stream function is zero on both boundaries. 

Solutions will be discussed in terms of an average viscosity F given in dimensionless 
terms bv 

where S is the domain 0 < x < A, 0 < z < 1 in the x,z  plane. Then the Rayleigh 
number based on the viscosity ji, which will be termed the apparent Rayleigh number, 
is given by 

Ra = Ra/i?. 

To understand the motivation for defining an average viscosity by (15), a global 
mechanical energy equation is derived by multiplying the momentum equation (2) 
by the velocity ui and integrating over a prescribed region in space, in this case the 
domain S. For rigid (no-slip) or free (zero-shear-stress) isothermal boundaries, this 
gives - 

aui 
Ra(Nu - 1) A = Is rii ax, dS, 
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where Nu is the Nusselt number defined in terms of the net heat flux 0 transported 
across the fluid layer as 

NU = QdIkATh, 

where k is the thermal conductivity of the fluid. Noting that rij is symmetric, (16) can 
be written as 

Ra(Nu- 1)h = rij&ijdX. (17) s, 
This equation expresses a balance between the rate of work done by the motion against 
viscous stresses and the rate of release of buoyant energy by the fluid motion. Intro- 
ducing (1 1) and the definition of % reduces (17) to 

&(Nu- 1 ) h  = s, t2dS. (18) 

Therefore, when expressed in terms of the apparent Rayleigh number z, the mech- 
anical energy balance has no explicit dependence on the form of the viscosity law and, 
as will be shown later, an average viscosity defined by (15) provides an empirical basis 
for correlating the Nusselt number with Ra for a wide range of Ra and n. 

The equations describing finite amplitude thermal convection, (12)-( 14) with the 
viscosity law given by (lo), were solved with finite-difference approximations. Deriva- 
tives appearing in the equations were approximated by central-difference derivatives 
on a uniform spatial mesh of grid points. Convective derivatives in the thermal energy 
equation were approximated by conserving upwind-difference derivatives. The 
fourth-order equation (13) was solved as two coupled second-order equations by 
introducing the vorticity 

The resulting systems of coupled, nonlinear, algebraic equations were solved by the 
explicit iterative method discussed by Turcotte, Torrance & Hsui (1973). For the range 
of n considered the nonlinearity of (13) introduces no numerical instabilities not 
present in the constant-viscosity problem although iterative convergence of the 
solutions to a steady state is slower as n increases. 

The accuracy of the finite-difference solutions has been studied by comparing 
solutions on successively refined grids. Such convergence studies are essential for 
establishing the validity of finite-difference solutions and are particularly important 
for power-law fluids because the viscosity n- is singular at points in the flow where t 
vanishes. Results on grids as fine as 21 x 21 show that the flow in such regions is 
adequately resolved in so far as global flow properties are concerned. For a sequence 
of solutions on 12 x 12, 15 x 15 and 21 x 21 grids, global flow properties such as N u  
and $max show O(Ax)2 convergence trends. Error estimates are obtained by extra- 
polating the convergence trends to zero grid spacing. For moderate % ( 5  lo5), 
solutions on 15 x 15 and 21 x 2 1 grids have estimated truncation errors of 12 yo and 
7 yo in N u  respectively. The rate of convergence is nearly identical for constant- and 
variable-viscosity solutions at  the same value of %. Owing to the increasingly slow 
iterative convergence with increasing n, solutions on 21 x 21 grids have been obtained 
only for n < 5.  The reason for the slow convergence, although not well understood, is 
related to the increasing nonlinearity of (1 3). The solutions on 15 x 15 grids adequately 

w = -v=$. (19) 
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resolve the important details of the thermal and mechanical structure of the flow 
although greater accuracy might be desirable if experimental results were available 
for direct comparison. 

Even on much more refined grids, finite-difference solutions cannot resolve details 
of flow in the immediate vicinity of points of vanishing strain rate, where the viscosity 
becomes infinite. It is unlikely that any real fluid can be found which exhibits power- 
law behaviour to vanishingly small strain rates. Nevertheless it is important to under- 
stand the possible effect that regions of low strain rate would have on the flow. This 
has been examined by considering the more general viscosity law 

which gives 7r - 7ro as 13 -+ 0. For no+ 00 this reduces to the form of (10). Detailed studies 
of the effect of varying 7ro for n = 3 are reported by Parmentier et ak. (1976). For values 
of 7ro large compared with the average viscosity n, increasing 7ro further had no sig- 
nificant effect on the solutions, suggesting that regions of locally high viscosity do not 
have an important effect on the overall flow structure. Results for larger n (n = 7 was 
the largest considered) are similar. 

3. Results and discussion 
Results have been obtained for a range of Rayleigh numbers and for 1 < n < 9. 

For all the solutions reported here A = 2, i.e. the cell width is equal to the layer depth. 
Detailed discussion of solutions with n = 3 is given by Parmentier et al. (1976). In  this 
case the solutions for a non-Newtonian fluid are very similar to those for a constant- 
viscosity fluid. Attention here is directed to larger values of n, 3 < n < 9, for which 
the strain-rate dependence of viscosity has a significant effect on the flow structure. 

Figure 1 presents a sequence of solutions for Ra = 500 with n varying from 3 to 9. 
For each value of n the structure of the flow in one cell of the periodic pattern is 
represented in terms of isotherms, given at equal fractions of the temperature difference 
AT between the boundaries, streamlines, given at equal fractions of $’,ax, and vis- 
cosity contours, given at multiples of the average viscosity 5. The values of Nu, emax 
and ?i: for each value of n are given in the figure caption. For the purpose of comparison, 
all of these solutions are on 15 x 15 grids. 

The thermal structure remains generally similar for all the solutions, consisting of 
hot ascending and cold descending plumes in which buoyant potential energy driving 
the viscous motion is released. The plumes form as continuations of thermal boundary 
layers adjacent to the top and bottom boundaries of the cell. The interior of the cell is 
isothermal. For increasing n the thermal boundary layers become thinner and Nu 
and pmSx increase. However, as will be shown, this represents only an increase in the 
apparent Rayleigh number. 

Important changes in the flow pattern occur with increasing n. As n increases regions 
of stagnant fluid form above the hot ascending and below the cold descending thermal 
plumes. I n  the hite-difference solutions, the fluid in these regions is not completely 
stagnant but undergoes a very weak recirculation. Corresponding changes can be 
seen in the viscosity field, the stagnant regions appearing as regions of high viscosity. 
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FIGURE 1. Isotherms, streamlines and contours of constant viscosity for Ra = 500. Isotherms 
(solid) and streamlines (dashed) are given at equal fractions of A T  and respectively. Vis- 
cosity contours are given at integer multiples of the average viscosity if defined in (15). (a) n = 3 
with Nu = 3.16, = 11.2 and ?i = 3.81 x = 27.5 and 
ii = 7 . 7 6 ~  10-3. (c) n = 7 with Nu = 5.36, (d) n = 9 with 
Nu = 6.12, 

( b )  n = 5 with Nu = 4.43, 
= 39.7 and ?i = 3 . 7 5 ~  

= 49.9 and ?i = 2 . 3 5 ~  

The viscous dissipation rate, given by 

4 = 2 17../j. a? a j  = 7+n+lM(n--I), (21) 

varies inversely with the viscosity 7~ for n > 1. Therefore the stagnant regions of high 
viscosity are regions of low viscous dissipation. The last expression in (21) follows 
from (10) and (1 1). An indeterminate form results for n = 1 since ;TT = 1. In  this case 
the viscous dissipation cannot be expressed as a function of the viscosity alone. 

For all values of n, high viscosity occurs in isolated regions where the strain rate 
vanishes. Two such regions occur on the planes x = 0 and x = +A but appear to have 
no effect on the flow since stresses are small in these regions. Broad arcuate zones of 
high viscosity containing regions of locally higher viscosity occur in the interior of the 
flow. However, the viscosity in regions of high strain rate is approximately equal to the 
average value ?i for the complete range of n considered. This is an indication that the 
viscous dissipation required to balance the buoyant potential energy released by the 
motion occurs in regions of high strain rate. 

As stated earlier, the apparent Rayleigh number based on the average viscosity 3 
provides a means of correlating the Nusselt number for various values of n. The 
Rayleigh number % based on the average viscosity has been calculated for each case 
shown in figure 1. The Nusselt number is plotted as a function of & in figure 2. Also 
plotted in this figure is the Nusselt number for constant-viscosity fluids (n = 1 and 
Ra = Fa) over a range of RY An excellent correlation is noted between results for 
non-Newtonian and constant-viscosity fluids. In  both cases Nu varies approximately 
as &a, the variation found from the experimental results of Silveston (1958) for a 

constant-viscosity fluid. Since F a  increases with increasing n at constant Ra, this 
gives rise to the increase in apparent Rayleigh number noted earlier in discussing the 
results in figure 1. 



Thermal convection in non-Newtonian $uids 9 

1 1  I 1 1 1 1 1 '  I I I I I 1 1 1 1  I I 
3 x  1 0 3  I o4 3~ 1 0 4  I 05 3x 10' 

RT 
- 

FIGURE 2. Nusselt number as a function of apparent 'Rayleigh number Ra, showing correlation 
of results for constant viscosity with those for power-law fluids for a range of n. 0, n = 1, 
Ra = Ra; m, n = 3, Ra = 500; 0, n = 5, Ra = 500; A, n = 7, Ra = 500; 0 ,  n = 7, 
Ra = 500. 

- 
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FIGURE 3. Nusselt number as a function of apparent Rayleigh number Ra, showing correlation 
of results for constant viscosity (circles) with those for a power-law fluid with n = 3 (squares) 
for a range of (from Parmentier et al. 1976). Also shown (solid line) is the experimental 
correlation N u  = 0.24 %* of Silveston (1958). 

- 

The correlation of the Nusselt number with& also holds for n = 3 over a wide 
range of Rayleigh numbers. This is shown by the results in figure 3, taken from 
Parmentier et al. (1976). Also shown in this figure is the correlation of Silveston (1958). 

It is important to note that the correlation of Nu with Ra is purely empirical and does 
not follow directly from the energy balance given in (18).  That the energy balance, 
when written in terms of the average viscosity, has no explicit dependence on n only 
suggests that  this correlation might hold. 

Cells of unit aspect ratio ( A  = 2) remain stable to two-dimensional disturbances in 
the x, z plane for the complete range of parameters investigated. Variations of h were 
considered only for n = 3 .  I n  that case, the Nusselt number was a maximum in the 
neighbourhood of h = 2. This does not necessarily mean that the two-dimensional 
cellular structure is stable to three-dimensional disturbances or that it is a physically 
realizable flow pattern under all conditions. I n  a constant-viscosity fluid, the theory 
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of Busse (1967) and the experiments of Krishnamurti (1970) have shown that two- 
dimensional rolls are stable for only a limited range of Rayleigh numbers above the 
critical value. Liang & Acrivos (1970) observed that two-dimensional rolls in their 
non-Newtonian fluid transformed to a more complex three-dimensional pattern a t  
approximately the same value of the Rayleigh number as in constant-viscosity fluids. 
This may not be surprising since for the conditions of their experiments fluid be- 
haviour would have been only weakly non-Newtonian. Since the present study con- 
siders only two-dimensional motion, the range of stability of two-dimensional rolls 
in a highly non-Newtonian fluid cannot be determined. 

4. Conclusions 
For weakly non-Newtonian fluids (n 5 3) differences in the structure of steady- 

state thermal convection cells from that for Newtonian fluids is small. This is not true 
for larger n. As n increases, the flow patterns show that fluid deformation tends to 
become more localized and regions of stagnant fluid develop. 

An average viscosity has been defined, on the basis of energy considerations, as the 
average over the region of flow of the viscosity weighted by the strain rate squared. 
A good correlation of the heat flux with a Rayleigh number based on this average 
viscosity results that is independent of the exponent in the viscosity law. This is true 
despite significant differences in flow structure. 

This research has been partially supported by the Earth Sciences Section of the 
National Science Foundation under NSF grant DES72-01522. Final stages of the 
work were completed while the author was a t  Oxford University supported by a 
fellowship from the National Science Foundation. 
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